2,200 research outputs found

    Transient tunneling effects of resonance doublets in triple barrier systems

    Get PDF
    Transient tunneling effects in triple barrier systems are investigated by considering a time-dependent solution to the Schr\"{o}dinger equation with a cutoff wave initial condition. We derive a two-level formula for incidence energies EE near the first resonance doublet of the system. Based on that expression we find that the probability density along the internal region of the potential, is governed by three oscillation frequencies: one of them refers to the well known Bohr frequency, given in terms of the first and second resonance energies of the doublet, and the two others, represent a coupling with the incidence energy EE. This allows to manipulate the above frequencies to control the tunneling transient behavior of the probability density in the short-time regim

    Rare top decay and CP violation in THDM

    Get PDF
    We discuss the formalism of two Higgs doublet model type III with CP violation from CP-even CP-odd mixing in the neutral Higgs bosons. The flavor changing interactions among neutral Higgs bosons and fermions are presented at tree level in this type of model. These assumptions allow the study rare top decays mediated by neutral Higgs bosons, particularly we are interested in tcl+lt\rightarrow c l^+l^-. For this process we estimated upper bounds of the branching ratios Br(tcτ+τ)\textrm{Br}(t\rightarrow c \tau^+\tau^-) of the order of 10910710^{-9}\sim 10^{-7} for a neutral Higgs boson mass of 125 GeV and tanβ=1\tan\beta=1, 1.5, 2, 2.5. For the case of tcτ+τt\rightarrow c \tau^+\tau^- the number of possible events is estimated from 1 to 10 events which could be observed in future experiments at LHC with a luminosity of 300 fb1\textrm{fb}^{-1} and 14 GeV for the energy of the center of mass. Also we estimate that the number of events for the process tcl+lt\rightarrow c l^+l^- in different scenarios is of order of 25002500.Comment: 8 pages, 5 figure

    Nonabelian 2D Gauge Theories for Determinantal Calabi-Yau Varieties

    Full text link
    The two-dimensional supersymmetric gauged linear sigma model (GLSM) with abelian gauge groups and matter fields has provided many insights into string theory on Calabi--Yau manifolds of a certain type: complete intersections in toric varieties. In this paper, we consider two GLSM constructions with nonabelian gauge groups and charged matter whose infrared CFTs correspond to string propagation on determinantal Calabi-Yau varieties, furnishing another broad class of Calabi-Yau geometries in addition to complete intersections. We show that these two models -- which we refer to as the PAX and the PAXY model -- are dual descriptions of the same low-energy physics. Using GLSM techniques, we determine the quantum K\"ahler moduli space of these varieties and find no disagreement with existing results in the literature.Comment: v3: 46 pages, 1 figure. Corrected phase structure of general linear determinantal varieties. Typos correcte

    Two-Sphere Partition Functions and Gromov-Witten Invariants

    Full text link
    Many N=(2,2) two-dimensional nonlinear sigma models with Calabi-Yau target spaces admit ultraviolet descriptions as N=(2,2) gauge theories (gauged linear sigma models). We conjecture that the two-sphere partition function of such ultraviolet gauge theories -- recently computed via localization by Benini et al. and Doroud et al. -- yields the exact K\"ahler potential on the quantum K\"ahler moduli space for Calabi-Yau threefold target spaces. In particular, this allows one to compute the genus zero Gromov-Witten invariants for any such Calabi-Yau threefold without the use of mirror symmetry. More generally, when the infrared superconformal fixed point is used to compactify string theory, this provides a direct method to compute the spacetime K\"ahler potential of certain moduli (e.g., vector multiplet moduli in type IIA), exactly in {\alpha}'. We compute these quantities for the quintic and for R{\o}dland's Pfaffian Calabi-Yau threefold and find agreement with existing results in the literature. We then apply our methods to a codimension four determinantal Calabi-Yau threefold in P^7, recently given a nonabelian gauge theory description by the present authors, for which no mirror Calabi-Yau is currently known. We derive predictions for its Gromov-Witten invariants and verify that our predictions satisfy nontrivial geometric checks.Comment: 25 pages + 2 appendices; v2 corrects a divisor in K\"ahler moduli space and includes a new calculation that confirms a geometric prediction; v3 contains minor update of Gromov-Witten invariant extraction procedur
    corecore